Motivation: Maintaining a Sorted Collection of Data

- A data dictionary is a sorted collection of data with the following key operations:
 - search for an item (and possibly delete it)
 - insert a new item
- If we use a list to implement a data dictionary, efficiency = $O(n)$.

<table>
<thead>
<tr>
<th>data structure</th>
<th>searching for an item</th>
<th>inserting an item</th>
</tr>
</thead>
<tbody>
<tr>
<td>a list implemented using an array</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a list implemented using a linked list</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- In the next few lectures, we’ll look at data structures (trees and hash tables) that can be used for a more efficient data dictionary.
- We’ll also look at other applications of trees.
What Is a Tree?

• A tree consists of:
 • a set of *nodes*
 • a set of *edges*, each of which connects a pair of nodes

• Each node may have one or more *data items*.
 • each data item consists of one or more fields
 • *key field* = the field used when searching for a data item
 • multiple data items with the same key are referred to as *duplicates*

• The node at the “top” of the tree is called the *root* of the tree.

Relationships Between Nodes

• If a node N is connected to other nodes that are directly below it in the tree, N is referred to as their *parent* and they are referred to as its *children*.
 • example: node 5 is the parent of nodes 10, 11, and 12

• Each node is the child of *at most one* parent.

• Other family-related terms are also used:
 • nodes with the same parent are *siblings*
 • a node’s *ancestors* are its parent, its parent's parent, etc.
 • example: node 9’s ancestors are 3 and 1
 • a node’s *descendants* are its children, their children, etc.
 • example: node 1’s descendants are *all* of the other nodes
Types of Nodes

- A leaf node is a node without children.
- An interior node is a node with one or more children.

A Tree is a Recursive Data Structure

- Each node in the tree is the root of a smaller tree!
 - refer to such trees as subtrees to distinguish them from the tree as a whole
 - example: node 2 is the root of the subtree circled above
 - example: node 6 is the root of a subtree with only one node

- We’ll see that tree algorithms often lend themselves to recursive implementations.
Path, Depth, Level, and Height

- There is exactly one path (one sequence of edges) connecting each node to the root.
- Depth of a node = # of edges on the path from it to the root.
- Nodes with the same depth form a level of the tree.
- The height of a tree is the maximum depth of its nodes.
 - example: the tree above has a height of 2

Binary Trees

- In a binary tree, nodes have at most two children.
- Recursive definition: a binary tree is either:
 1) empty, or
 2) a node (the root of the tree) that has
 • one or more data items
 • a left child, which is itself the root of a binary tree
 • a right child, which is itself the root of a binary tree
- Example:
- How are the edges of the tree represented?
Representing a Binary Tree Using Linked Nodes

```java
public class LinkedTree {
    private class Node {
        private int key;
        private LLList data;  // list of data items
        private Node left; // reference to left child
        private Node right; // reference to right child
    }

    private Node root;
}
```

Traversing a Binary Tree

- Traversing a tree involves visiting all of the nodes in the tree.
 - visiting a node = processing its data in some way
 - example: print the key
- We will look at four types of traversals. Each of them visits the nodes in a different order.
- To understand traversals, it helps to remember the recursive definition of a binary tree, in which every node is the root of a subtree.
Preorder Traversal

• preorder traversal of the tree whose root is N:
 1) visit the root, N
 2) recursively perform a preorder traversal of N’s left subtree
 3) recursively perform a preorder traversal of N’s right subtree

• Preorder traversal of the tree above:
 7 5 2 4 6 9 8

• Which state-space search strategy visits nodes in this order?

Implementing Preorder Traversal

```java
public class LinkedTree {
    private Node root;

    public void preorderPrint() {
        if (root != null)
            preorderPrintTree(root);
    }

    private static void preorderPrintTree(Node root) {
        System.out.print(root.key + " ");
        if (root.left != null)
            preorderPrintTree(root.left);
        if (root.right != null)
            preorderPrintTree(root.right);
    }
}
```

• `preorderPrintTree()` is a static, recursive method that takes as a parameter the root of the tree/subtree that you want to print.
• `preorderPrint()` is a non-static method that makes the initial call. It passes in the root of the entire tree as the parameter.
void preorderPrintTree(Node root) {
 System.out.print(root.key + " ");
 if (root.left != null)
 preorderPrintTree(root.left);
 if (root.right != null)
 preorderPrintTree(root.right);
}

Postorder Traversal

- postorder traversal of the tree whose root is N:
 1) recursively perform a postorder traversal of N’s left subtree
 2) recursively perform a postorder traversal of N’s right subtree
 3) visit the root, N

Postorder traversal of the tree above:

4 2 6 5 8 9 7
Implementing Postorder Traversal

```java
public class LinkedTree {
    private Node root;

    public void postorderPrint() {
        if (root != null) {
            postorderPrintTree(root);
        }
    }

    private static void postorderPrintTree(Node root) {
        if (root.left != null) {
            postorderPrintTree(root.left);
        }
        if (root.right != null) {
            postorderPrintTree(root.right);
        }
        System.out.print(root.key + " ");
    }
}
```

- Note that the root is printed *after* the two recursive calls.

Tracing Postorder Traversal

```java
void postorderPrintTree(Node root) {
    if (root.left != null) {
        postorderPrintTree(root.left);
    }
    if (root.right != null) {
        postorderPrintTree(root.right);
    }
    System.out.print(root.key + " ");
}
```
Inorder Traversal

• inorder traversal of the tree whose root is N:
 1) recursively perform an inorder traversal of N’s left subtree
 2) visit the root, N
 3) recursively perform an inorder traversal of N’s right subtree

 7
 /\
 5 9
 / \ /
 2 6 8
 /
 4

• Inorder traversal of the tree above:
 2 4 5 6 7 8 9

Implementing Inorder Traversal

```java
public class LinkedTree {
    private Node root;

    public void inorderPrint() {
        if (root != null)
            inorderPrintTree(root);
    }

    private static void inorderPrintTree(Node root) {
        if (root.left != null)
            inorderPrintTree(root.left);
        System.out.print(root.key + " ");
        if (root.right != null)
            inorderPrintTree(root.right);
    }
}
```

• Note that the root is printed between the two recursive calls.
Tracing Inorder Traversal

```java
void inorderPrintTree(Node root) {
    if (root.left != null)
        inorderPrintTree(root.left);
    System.out.print(root.key + " ");
    if (root.right != null)
        inorderPrintTree(root.right);
}
```

Level-Order Traversal

- Visit the nodes one level at a time, from top to bottom and left to right.

- Level-order traversal of the tree above: 7 5 9 2 6 8 4

- Which state-space search strategy visits nodes in this order?

- How could we implement this type of traversal?
Tree-Traversals Summary

preorder: root, left subtree, right subtree
postorder: left subtree, right subtree, root
inorder: left subtree, root, right subtree
level-order: top to bottom, left to right

• Perform each type of traversal on the tree below:

Using a Binary Tree for an Algebraic Expression

• We’ll restrict ourselves to fully parenthesized expressions and to the following binary operators: +, −, *, /

• Example expression: \((a + (b * c)) - (d / e)\)

• Tree representation:

• Leaf nodes are variables or constants; interior nodes are operators.

• Because the operators are binary, either a node has two children or it has none.
Traversing an Algebraic-Expression Tree

• Inorder gives conventional algebraic notation.
 • print ‘(’ before the recursive call on the left subtree
 • print ‘)’ after the recursive call on the right subtree
 • for tree at right: \((a + (b + c)) - (d / e)\)

• Preorder gives functional notation.
 • print ‘(’s and ‘)’s as for inorder, and commas after the recursive call on the left subtree
 • for tree above: \(\text{subtr}\{\text{add}\{a, \text{mul}\{b, c\}\}, \text{divide}\{d, e\}\}\)

• Postorder gives the order in which the computation must be carried out on a stack/RPN calculator.
 • for tree above: \(\text{push} \ a, \text{push} \ b, \text{push} \ c, \text{multiply}, \text{add}, \ldots\)

• see ~csci e119/examples/trees/ExprTree.java

Fixed-Length Character Encodings

• A character encoding maps each character to a number.

• Computers usually use fixed-length character encodings.
 • ASCII (American Standard Code for Information Interchange) uses 8 bits per character.

<table>
<thead>
<tr>
<th>char</th>
<th>dec</th>
<th>binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>97</td>
<td>01100001</td>
</tr>
<tr>
<td>b</td>
<td>98</td>
<td>01100010</td>
</tr>
<tr>
<td>c</td>
<td>99</td>
<td>01100011</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

example: “bat” is stored in a text file as the following sequence of bits:
01100010 01100001 01110100

• Unicode uses 16 bits per character to accommodate foreign-language characters. (ASCII codes are a subset.)

• Fixed-length encodings are simple, because
 • all character encodings have the same length
 • a given character always has the same encoding
Variable-Length Character Encodings

- Problem: fixed-length encodings waste space.
- Solution: use a variable-length encoding.
 - use encodings of different lengths for different characters
 - assign shorter encodings to frequently occurring characters
- Example:

 \[
 \begin{array}{|c|c|}
 \hline
 \text{char} & \text{code} \\
 \hline
 e & 01 \\
 o & 100 \\
 s & 111 \\
 t & 00 \\
 \hline
 \end{array}
 \]

 “test” would be encoded as
 \[
 00 01 111 00 \rightarrow 00111100
 \]

- Challenge: when decoding/decompressing an encoded document, how do we determine the boundaries between characters?
 - example: for the above encoding, how do we know whether the next character is 2 bits or 3 bits?
- One requirement: no character’s encoding can be the prefix of another character’s encoding (e.g., couldn’t have 00 and 001).

Huffman Encoding

- Huffman encoding is a type of variable-length encoding that is based on the actual character frequencies in a given document.
- Huffman encoding uses a binary tree:
 - to determine the encoding of each character
 - to decode an encoded file – i.e., to decompress a compressed file, putting it back into ASCII
- Example of a Huffman tree (for a text with only six chars):

Leaf nodes are characters.
Left branches are labeled with a 0, and right branches are labeled with a 1.
If you follow a path from root to leaf, you get the encoding of the character in the leaf.
example: 101 = ’i’
Building a Huffman Tree

1) Begin by reading through the text to determine the frequencies.

2) Create a list of nodes that contain (character, frequency) pairs for each character that appears in the text.

 - 'o' 21
 - 'i' 23
 - 'a' 25
 - 's' 26
 - 't' 27
 - 'e' 40

3) Remove and “merge” the nodes with the two lowest frequencies, forming a new node that is their parent.
 - left child = lowest frequency node
 - right child = the other node
 - frequency of parent = sum of the frequencies of its children
 • in this case, 21 + 23 = 44

Building a Huffman Tree (cont.)

4) Add the parent to the list of nodes:

 - 'a' 25
 - 's' 26
 - 't' 27
 - 'e' 40
 - 44

5) Repeat steps 3 and 4 until there is only a single node in the list, which will be the root of the Huffman tree.
Completing the Huffman Tree Example I

• Merge the two remaining nodes with the lowest frequencies:

Completing the Huffman Tree Example II

• Merge the next two nodes:
Completing the Huffman Tree Example III

- Merge again:

Completing the Huffman Tree Example IV

- The next merge creates the final tree:

- Characters that appear more frequently end up higher in the tree, and thus their encodings are shorter.
Using Huffman Encoding to Compress a File

1) Read through the input file and build its Huffman tree.
2) Write a file header for the output file.
 – include an array containing the frequencies so that the tree can be rebuilt when the file is decompressed.
3) Traverse the Huffman tree to create a table containing the encoding of each character:

<table>
<thead>
<tr>
<th>Character</th>
<th>Huffman Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0</td>
</tr>
<tr>
<td>e</td>
<td></td>
</tr>
<tr>
<td>i</td>
<td>101</td>
</tr>
<tr>
<td>o</td>
<td>100</td>
</tr>
<tr>
<td>s</td>
<td>111</td>
</tr>
<tr>
<td>t</td>
<td>00</td>
</tr>
</tbody>
</table>

4) Read through the input file a second time, and write the Huffman code for each character to the output file.

Using Huffman Decoding to Decompress a File

1) Read the frequency table from the header and rebuild the tree.
2) Read one bit at a time and traverse the tree, starting from the root:
 - when you read a bit of 1, go to the right child
 - when you read a bit of 0, go to the left child
 - when you reach a leaf node, record the character,
 return to the root, and continue reading bits

 The tree allows us to easily overcome the challenge of determining the character boundaries!

 example: 10111110000111100
 - 101 = right,left,right = i
 - 111 = right,right,right = s
 - 110 = right,right,left = a
 - 00 = left,left = t
 - 01 = left,right = e
 - 111 = right,right,right = s
 - 00 = left,left = t
Binary Search Trees

- Search-tree property: for each node k:
 - all nodes in k’s left subtree are $< k$
 - all nodes in k’s right subtree are $\geq k$

- Our earlier binary-tree example is a search tree:

![Binary Search Tree Diagram]

Searching for an Item in a Binary Search Tree

- Algorithm for searching for an item with a key k:
 - if $k ==$ the root node’s key, you’re done
 - else if $k <$ the root node’s key, search the left subtree
 - else search the right subtree

- Example: search for 7

![Searching for Item Diagram]
Implementing Binary-Tree Search

```java
public class LinkedTree {   // Nodes have keys that are ints
    private Node root;

    public LLList search(int key) {
        Node n = searchTree(root, key);
        return (n == null ? null : n.data);
    }

    private static Node searchTree(Node root, int key) {
        // write together
    }
}
```

• If we find a node that has the specified key, we return its data field, which holds a list of the data items for that key.

Inserting an Item in a Binary Search Tree

• We want to insert an item whose key is k.

• We traverse the tree as if we were searching for k.

• If we find a node with key k, we add the data item to the list of items for that node.

• If we don’t find it, the last node we encounter will be the parent P of the new node.
 • if $k < P$’s key, make the new node P’s left child
 • else make the node P’s right child

• Special case: if the tree is empty, make the new node the root of the tree.

• The resulting tree is still a search tree.
Implementing Binary-Tree Insertion

• We'll implement part of the `insert()` method together.
• We'll use iteration rather than recursion.
• Our method will use two references/pointers:
 • `trav`: performs the traversal down to the point of insertion
 • `parent`: stays one behind `trav`
 • like the `trail` reference that we sometimes use when traversing a linked list

```java
public void insert(int key, Object data) {
    Node parent = null;
    Node trav = root;
    while (trav != null) {
        if (trav.key == key) {
            trav.data.addItem(data, 0);
            return;
        }
    }
    Node newNode = new Node(key, data);
    if (parent == null)  // the tree was empty
        root = newNode;
    else if (key < parent.key)
        parent.left = newNode;
    else
        parent.right = newNode;
}
```
Deleting Items from a Binary Search Tree

- Three cases for deleting a node x
- **Case 1:** x has no children.
 Remove x from the tree by setting its parent’s reference to null.

 Example: delete 4

- **Case 2:** x has one child.
 Take the parent’s reference to x and make it refer to x’s child.

 Example: delete 12

Deleting Items from a Binary Search Tree (cont.)

- **Case 3:** x has two children
 - we can’t just delete x. why?
 - instead, we replace x with a node from elsewhere in the tree
 - to maintain the search-tree property, we must choose the replacement carefully
 - *Example:* what nodes could replace 26 below?
Deleting Items from a Binary Search Tree (cont.)

- **Case 3:** x has two children (continued):
 - replace x with the smallest node in x's right subtree—call it y
 - y will either be a leaf node or will have one right child. why?
 - After copying y's item into x, we delete y using case 1 or 2.

ex:

delete 26

```
public LLList delete(int key) {
  // Find the node and its parent.
  Node parent = null;
  Node trav = root;
  while (trav != null && trav.key != key) {
    parent = trav;
    if (key < trav.key)
      trav = trav.left;
    else
      trav = trav.right;
  }
  // Delete the node (if any) and return the removed items.
  if (trav == null)    // no such key
    return null;
  else {
    LLList removedData = trav.data;
    deleteNode(trav, parent);
    return removedData;
  }
}
```

- This method uses a helper method to delete the node.
Implementing Case 3

```java
private void deleteNode(Node toDelete, Node parent) {
    if (toDelete.left != null && toDelete.right != null) {
        // Find a replacement - and
        // the replacement's parent.
        Node replaceParent = toDelete;
        // Get the smallest item
        // in the right subtree.
        Node replace = toDelete.right;
        // What should go here?
        toDelete.key = replace.key;
        toDelete.data = replace.data;
        // Recursively delete the replacement
        // item's old node. It has at most one
        // child, so we don't have to
        // worry about infinite recursion.
        deleteNode(replace, replaceParent);
    } else {
        ...
    }
}
```

Implementing Cases 1 and 2

```java
private void deleteNode(Node toDelete, Node parent) {
    if (toDelete.left != null && toDelete.right != null) {
    } else {
        Node toDeleteChild;
        if (toDelete.left != null)
            toDeleteChild = toDelete.left;
        else
            toDeleteChild = toDelete.right;
        // Note: in case 1, toDeleteChild
        // will have a value of null.
        if (toDelete == root)
            root = toDeleteChild;
        else if (toDelete.key < parent.key)
            parent.left = toDeleteChild;
        else
            parent.right = toDeleteChild;
    }
}```
Efficiency of a Binary Search Tree

- The three key operations (search, insert, and delete) all have the same time complexity.
  - insert and delete both involve a search followed by a constant number of additional operations

- Time complexity of searching a binary search tree:
  - best case: $O(1)$
  - worst case: $O(h)$, where $h$ is the height of the tree
  - average case: $O(h)$

- What is the height of a tree containing $n$ items?
  - it depends! why?

Balanced Trees

- A tree is balanced if, for each node, the node’s subtrees have the same height or have heights that differ by 1.

- For a balanced tree with $n$ nodes:
  - height = $O(\log_2 n)$.
  - gives a worst-case time complexity that is logarithmic ($O(\log_2 n)$)
    - the best worst-case time complexity for a binary tree
What If the Tree Isn't Balanced?

- Extreme case: the tree is equivalent to a linked list
  - height = $n - 1$
  - worst-case
    - time complexity = $O(n)$

- We'll look next at search-tree variants that take special measures to ensure balance.