Sorting an Array of Integers

- Ground rules:
 - sort the values in increasing order
 - sort “in place,” using only a small amount of additional storage

- Terminology:
 - position: one of the memory locations in the array
 - element: one of the data items stored in the array
 - element i: the element at position i

- Goal: minimize the number of comparisons C and the number of moves M needed to sort the array.
 - move = copying an element from one position to another
Defining a Class for our Sort Methods

```java
public class Sort {
    public static void bubbleSort(int[] arr) {
        ...
    }
    public static void insertionSort(int[] arr) {
        ...
    }
    ...
}
```

- Our `Sort` class is simply a collection of methods like Java's built-in `Math` class.
- Because we never create `Sort` objects, all of the methods in the class must be `static`.
 - outside the class, we invoke them using the class name: e.g., `Sort.bubbleSort(arr)`.
- ~/csci119/examples/sorting/Sort.java

Defining a Swap Method

- It would be helpful to have a method that swaps two elements of the array.
- Why won't the following work?
  ```java
  public static void swap(int a, int b) {
      int temp = a;
      a = b;
      b = temp;
  }
  ```
An Incorrect Swap Method

```java
public static void swap(int a, int b) {
    int temp = a;
    a = b;
    b = temp;
}
```

• Trace through the following lines to see the problem:

```java
int[] arr = {15, 7, ...};
swap(arr[0], arr[1]);
```

A Correct Swap Method

```java
public static void swap(int[] arr, int a, int b) {
    int temp = arr[a];
    arr[a] = arr[b];
    arr[b] = temp;
}
```

• This method works:

```java
int[] arr = {15, 7, ...};
swap(arr[0], arr[1]);
```

• Trace through the following with a memory diagram to convince yourself that it works:

```java
int[] arr = {15, 7, ...};
swap(arr, 0, 1);
```
Selection Sort

- Basic idea:
 - consider the positions in the array from left to right
 - for each position, find the element that belongs there and put it in place by swapping it with the element that's currently there

- Example:

 \[
 \begin{array}{cccccc}
 0 & 1 & 2 & 3 & 4 \\
 15 & 6 & 2 & 12 & 4 \\
 \end{array}
 \]

 Why don't we need to consider position 4?

Selecting an Element

- When we consider position \(i\), the elements in positions 0 through \(i-1\) are already in their final positions.

 Example for \(i = 3\):

 \[
 \begin{array}{cccccccc}
 0 & 1 & 2 & 3 & 4 & 5 & 6 \\
 2 & 4 & 7 & 21 & 25 & 10 & 17 \\
 \end{array}
 \]

- To select an element for position \(i\):
 - consider elements \(i, i+1, i+2, \ldots, \text{arr.length} - 1\), and keep track of \(\text{indexMin}\), the index of the smallest element seen thus far
 - when we finish this pass, \(\text{indexMin}\) is the index of the element that belongs in position \(i\).
 - swap \(\text{arr}[i]\) and \(\text{arr}[\text{indexMin}]\):
Implementation of Selection Sort

- Use a helper method to find the index of the smallest element:
  ```java
  private static int indexSmallest(int[] arr, int lower, int upper) {
    int indexMin = lower;
    for (int i = lower+1; i <= upper; i++)
      if (arr[i] < arr[indexMin])
        indexMin = i;
    return indexMin;
  }
  ```

- The actual sort method is very simple:
  ```java
  public static void selectionSort(int[] arr) {
    for (int i = 0; i < arr.length-1; i++) {
      int j = indexSmallest(arr, i, arr.length-1);
      swap(arr, i, j);
    }
  }
  ```

Time Analysis

- Some algorithms are much more efficient than others.
- The time efficiency or time complexity of an algorithm is some measure of the number of "operations" that it performs.
 - for sorting algorithms, we'll focus on two types of operations: comparisons and moves

- The number of operations that an algorithm performs typically depends on the size, \(n \), of its input.
 - for sorting algorithms, \(n \) is the # of elements in the array
 - \(C(n) \) = number of comparisons
 - \(M(n) \) = number of moves

- To express the time complexity of an algorithm, we'll express the number of operations performed as a function of \(n \).
 - examples: \(C(n) = n^2 + 3n \)
 \(M(n) = 2n^2 - 1 \)
Counting Comparisons by Selection Sort

```java
private static int indexSmallest(int[] arr, int lower, int upper){
    int indexMin = lower;
    for (int i = lower+1; i <= upper; i++)
        if (arr[i] < arr[indexMin])
            indexMin = i;
    return indexMin;
}
public static void selectionSort(int[] arr) {
    for (int i = 0; i < arr.length-1; i++) {
        int j = indexSmallest(arr, i, arr.length-1);
        swap(arr, i, j);
    }
}
```

- To sort \(n \) elements, selection sort performs \(n - 1 \) passes:
 - on 1st pass, it performs \(n - 1 \) comparisons to find `indexSmallest`
 - on 2nd pass, it performs \(n - 2 \) comparisons...
 - on the \((n-1)\)st pass, it performs 1 comparison
- Adding up the comparisons for each pass, we get:
 \[
 C(n) = 1 + 2 + \ldots + (n - 2) + (n - 1)
 \]

Counting Comparisons by Selection Sort (cont.)

- The resulting formula for \(C(n) \) is the sum of an arithmetic sequence:
 \[
 C(n) = 1 + 2 + \ldots + (n - 2) + (n - 1) = \sum_{i=1}^{n-1} i
 \]
- Formula for the sum of this type of arithmetic sequence:
 \[
 \sum_{i=1}^{m} i = \frac{m(m + 1)}{2}
 \]
- Thus, we can simplify our expression for \(C(n) \) as follows:
 \[
 C(n) = \sum_{i=1}^{n-1} i
 = \frac{(n - 1)((n - 1) + 1)}{2}
 = \frac{(n - 1)n}{2}
 \]
 \[
 C(n) = \frac{n^2}{2} - \frac{n}{2}
 \]
Focusing on the Largest Term

- When \(n \) is large, mathematical expressions of \(n \) are dominated by their "largest" term — i.e., the term that grows fastest as a function of \(n \).
- **Example:** \(\frac{n^2}{2} - \frac{n}{2} \)

<table>
<thead>
<tr>
<th>(n)</th>
<th>(\frac{n^2}{2})</th>
<th>(\frac{n}{2})</th>
<th>(\frac{n^2}{2} - \frac{n}{2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>50</td>
<td>5</td>
<td>45</td>
</tr>
<tr>
<td>100</td>
<td>5000</td>
<td>50</td>
<td>4950</td>
</tr>
<tr>
<td>10000</td>
<td>50,000,000</td>
<td>5000</td>
<td>49,995,000</td>
</tr>
</tbody>
</table>

- In characterizing the time complexity of an algorithm, we'll focus on the largest term in its operation-count expression.
 - for selection sort, \(C(n) = \frac{n^2}{2} - \frac{n}{2} \approx \frac{n^2}{2} \)
- In addition, we'll typically ignore the coefficient of the largest term (e.g., \(\frac{n^2}{2} \to n^2 \)).

Big-O Notation

- We specify the largest term using big-O notation.
- e.g., we say that \(C(n) = \frac{n^2}{2} - \frac{n}{2} \) is \(O(n^2) \)

<table>
<thead>
<tr>
<th>name</th>
<th>example expressions</th>
<th>big-O notation</th>
</tr>
</thead>
<tbody>
<tr>
<td>constant time</td>
<td>1, 7, 10</td>
<td>(O(1))</td>
</tr>
<tr>
<td>logarithmic time</td>
<td>(3\log_{10} n, \log_2 n + 5)</td>
<td>(O(\log n))</td>
</tr>
<tr>
<td>linear time</td>
<td>(5n, 10n - 2\log_2 n)</td>
<td>(O(n))</td>
</tr>
<tr>
<td>(n \log n) time</td>
<td>(4n\log_2 n, n\log_2 n + n)</td>
<td>(O(n \log n))</td>
</tr>
<tr>
<td>quadratic time</td>
<td>(2n^2 + 3n, n^2 - 1)</td>
<td>(O(n^2))</td>
</tr>
<tr>
<td>exponential time</td>
<td>(2^n, 5e^n + 2n^2)</td>
<td>(O(c^n))</td>
</tr>
</tbody>
</table>

- For large inputs, efficiency matters more than CPU speed.
 - e.g., an \(O(\log n) \) algorithm on a slow machine will outperform an \(O(n) \) algorithm on a fast machine.
Ordering of Functions

• We can see below that:
 - \(n^2 \) grows faster than \(n \log_2 n \)
 - \(n \log_2 n \) grows faster than \(n \)
 - \(n \) grows faster than \(\log_2 n \)

Ordering of Functions (cont.)

• Zooming in, we see that:
 - \(n^2 \geq n \) for all \(n \geq 1 \)
 - \(n \log_2 n \geq n \) for all \(n \geq 2 \)
 - \(n > \log_2 n \) for all \(n \geq 1 \)
Mathematical Definition of Big-O Notation

• $f(n) = O(g(n))$ if there exist positive constants c and n_0 such that $f(n) \leq cg(n)$ for all $n \geq n_0$

• Example: $f(n) = \frac{n^2}{2} - \frac{n}{2}$ is $O(n^2)$, because
 $\frac{n^2}{2} - \frac{n}{2} \leq n^2$ for all $n \geq 0$.

• Big-O notation specifies an upper bound on a function $f(n)$ as n grows large.

```
\begin{align*}
f(n) &= \frac{n^2}{2} - \frac{n}{2} \\
g(n) &= n^2 \\
c &= 1 \\
n_0 &= 0
\end{align*}
```

Big-O Notation and Tight Bounds

• Big-O notation provides an upper bound, *not* a tight bound (upper and lower).

• Example:
 • $3n - 3$ is $O(n^2)$ because $3n - 3 \leq n^2$ for all $n \geq 1$
 • $3n - 3$ is also $O(2^n)$ because $3n - 3 \leq 2^n$ for all $n \geq 1$

• However, we generally try to use big-O notation to characterize a function as closely as possible – i.e., as if we were using it to specify a tight bound.
 • for our example, we would say that $3n - 3$ is $O(n)$
Big-Theta Notation

- In theoretical computer science, *big-theta* notation (Θ) is used to specify a tight bound.

- $f(n) = \Theta(g(n))$ if there exist constants c_1, c_2, and n_0 such that $c_1 g(n) \leq f(n) \leq c_2 g(n)$ for all $n > n_0$

- Example: $f(n) = \frac{n^2}{2} - \frac{n}{2}$ is $\Theta(n^2)$, because $(\frac{1}{4})n^2 \leq \frac{n^2}{2} - \frac{n}{2} \leq n^2$ for all $n \geq 2$

Big-O Time Analysis of Selection Sort

- **Comparisons**: we showed that $C(n) = \frac{n^2}{2} - \frac{n}{2}$
 - selection sort performs $O(n^2)$ comparisons

- **Moves**: after each of the $n-1$ passes to find the smallest remaining element, the algorithm performs a swap to put the element in place.
 - $n-1$ swaps, 3 moves per swap
 - $M(n) = 3(n-1) = 3n-3$
 - selection sort performs $O(n)$ moves.

- **Running time (i.e., total operations)**: ?
Sorting by Insertion I: Insertion Sort

- Basic idea:
 - going from left to right, “insert” each element into its proper place with respect to the elements to its left, “sliding over” other elements to make room.

- Example:

```
0 1 2 3 4
15 4 2 12 6
4 15 2 12 6
2 4 15 12 6
2 4 12 15 6
2 4 6 12 15
```

Comparing Selection and Insertion Strategies

- In selection sort, we start with the positions in the array and select the correct elements to fill them.

- In insertion sort, we start with the elements and determine where to insert them in the array.

- Here’s an example that illustrates the difference:

```
0 1 2 3 4 5 6
18 12 15 9 25 2 17
```

- Sorting by selection:
 - consider position 0: find the element (2) that belongs there
 - consider position 1: find the element (9) that belongs there
 - ...

- Sorting by insertion:
 - consider the 12: determine where to insert it
 - consider the 15: determine where to insert it
 - ...
Inserting an Element

- When we consider element \(i\), elements 0 through \(i - 1\) are already sorted with respect to each other.

 example for \(i = 3\):

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>14</td>
<td>19</td>
<td>9</td>
<td>...</td>
</tr>
</tbody>
</table>

- To insert element \(i\):
 - make a copy of element \(i\), storing it in the variable \(\text{toInsert}\):

 \[
 \begin{array}{c|c|c|c|c}
 \text{toInsert} & 6 & 14 & 19 & 9 \\
 \end{array}
 \]

 - consider elements \(i-1, i-2, ...\)
 - if an element > \(\text{toInsert}\), slide it over to the right
 - stop at the first element \(\leq \text{toInsert}\)

 \[
 \begin{array}{c|c|c|c|c}
 \text{toInsert} & 9 & 6 & 14 & 19 \\
 \end{array}
 \]

 - copy \(\text{toInsert}\) into the resulting “hole”:

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>9</td>
<td>14</td>
<td>19</td>
</tr>
</tbody>
</table>

Insertion Sort Example (done together)

description of steps

| 12 | 5 | 2 | 13 | 18 | 4 |
Implementation of Insertion Sort

```java
public class Sort {
    ...
    public static void insertionSort(int[] arr) {
        for (int i = 1; i < arr.length; i++) {
            if (arr[i] < arr[i-1]) {
                int toInsert = arr[i];
                int j = i;
                do {
                    arr[j] = arr[j-1];
                    j = j - 1;
                } while (j > 0 && toInsert < arr[j-1]);
                arr[j] = toInsert;
            }
        }
    }
}
```

Time Analysis of Insertion Sort

- The number of operations depends on the contents of the array.
- **best case:**

- **worst case:**

- **average case:**
Sorting by Insertion II: Shell Sort

- Developed by Donald Shell in 1959
- Improves on insertion sort
- Takes advantage of the fact that insertion sort is fast when an array is almost sorted.
- Seeks to eliminate a disadvantage of insertion sort: if an element is far from its final location, many “small” moves are required to put it where it belongs.
- Example: if the largest element starts out at the beginning of the array, it moves one place to the right on every insertion!

Shuffling elements 2 and 5

Shell sort uses “larger” moves that allow elements to quickly get close to where they belong.

Sorting Subarrays

- Basic idea:
 - use insertion sort on subarrays that contain elements separated by some increment
 - increments allow the data items to make larger “jumps”
 - repeat using a decreasing sequence of increments
- Example for an initial increment of 3:

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>36</td>
<td>18</td>
<td>10</td>
<td>27</td>
<td>3</td>
<td>20</td>
<td>9</td>
<td>8</td>
</tr>
</tbody>
</table>

 - three subarrays:
 1) elements 0, 3, 6
 2) elements 1, 4, 7
 3) elements 2 and 5
- Sort the subarrays using insertion sort to get the following:

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>3</td>
<td>10</td>
<td>27</td>
<td>8</td>
<td>20</td>
<td>36</td>
<td>18</td>
</tr>
</tbody>
</table>

 Next, we complete the process using an increment of 1.
Shell Sort: A Single Pass

• We don't consider the subarrays one at a time.
• We consider elements \(\text{arr}[\text{incr}] \) through \(\text{arr}[\text{arr.length-1}] \), inserting each element into its proper place with respect to the elements from its subarray that are to the left of the element.

The same example (incr = 3):

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>36</td>
<td>18</td>
<td>10</td>
<td>27</td>
<td>3</td>
<td>20</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>27</td>
<td>18</td>
<td>10</td>
<td>36</td>
<td>3</td>
<td>20</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>27</td>
<td>3</td>
<td>10</td>
<td>36</td>
<td>18</td>
<td>20</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>10</td>
<td>27</td>
<td>18</td>
<td>20</td>
<td>36</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>10</td>
<td>27</td>
<td>8</td>
<td>20</td>
<td>36</td>
<td>18</td>
</tr>
</tbody>
</table>

Inserting an Element in a Subarray

• When we consider element \(i \), the other elements in its subarray are already sorted with respect to each other.

example for \(i = 6 \) (incr = 3):

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>27</td>
<td>3</td>
<td>10</td>
<td>36</td>
<td>18</td>
<td>20</td>
<td>9</td>
<td>8</td>
</tr>
</tbody>
</table>

the other element's in 9's subarray (the 27 and 36) are already sorted with respect to each other

• To insert element \(i \):
 • make a copy of element \(i \), storing it in the variable \(\text{toInsert} \):

 \[
 \begin{array}{cccccccc}
 \text{toInsert} & 9 & 27 & 3 & 10 & 36 & 18 & 20 & 9 & 8 \\
 \end{array}
 \]

 • consider elements \(i-\text{incr}, i-(2*\text{incr}), i-(3*\text{incr}), ... \)
 • if an element > \(\text{toInsert} \), slide it right within the subarray
 • stop at the first element \(\leq \text{toInsert} \)

 \[
 \begin{array}{cccccccc}
 \text{toInsert} & 9 & 3 & 10 & 27 & 18 & 20 & 36 & 8 \\
 \end{array}
 \]

 • copy \(\text{toInsert} \) into the “hole”:

 \[
 \begin{array}{cccccccc}
 9 & 3 & 10 & 27 & 18 & 20 & 36 & 8 \\
 \end{array}
 \]
The Sequence of Increments

- Different sequences of decreasing increments can be used.

- Our version uses values that are one less than a power of two.
 - $2^k - 1$ for some k
 - ... 63, 31, 15, 7, 3, 1
 - can get to the next lower increment using integer division:
 \[
 \text{incr} = \text{incr}/2;
 \]

- Should avoid numbers that are multiples of each other.
 - otherwise, elements that are sorted with respect to each other in one pass are grouped together again in subsequent passes
 - repeat comparisons unnecessarily
 - get fewer of the large jumps that speed up later passes
 - example of a bad sequence: 64, 32, 16, 8, 4, 2, 1
 - what happens if the largest values are all in odd positions?

Implementation of Shell Sort

```java
public static void shellSort(int[] arr) {
    int incr = 1;
    while (2 * incr <= arr.length)
        incr = 2 * incr;
    incr = incr - 1;
    while (incr >= 1) {
        for (int i = incr; i < arr.length; i++) {
            if (arr[i] < arr[i-incr]) {
                int toInsert = arr[i];
                int j = i;
                do {
                    arr[j] = arr[j-incr];
                    j = j - incr;
                } while (j > incr-1 &&
                              toInsert < arr[j-incr]);
                arr[j] = toInsert;
            }
        }
        incr = incr/2;
    }
}
```

(If you replace incr with 1 in the for-loop, you get the code for insertion sort.)
Time Analysis of Shell Sort

- Difficult to analyze precisely
 - typically use experiments to measure its efficiency
- With a bad interval sequence, it’s $O(n^2)$ in the worst case.
- With a good interval sequence, it’s better than $O(n^2)$.
 - at least $O(n^{1.5})$ in the average and worst case
 - some experiments have shown average-case running times of $O(n^{1.25})$ or even $O(n^{7/6})$

- Significantly better than insertion or selection for large n:

<table>
<thead>
<tr>
<th>n</th>
<th>n^2</th>
<th>$n^{1.5}$</th>
<th>$n^{1.25}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>100</td>
<td>31.6</td>
<td>17.8</td>
</tr>
<tr>
<td>100</td>
<td>10,000</td>
<td>1000</td>
<td>316</td>
</tr>
<tr>
<td>10,000</td>
<td>100,000,000</td>
<td>1,000,000</td>
<td>100,000</td>
</tr>
<tr>
<td>10^6</td>
<td>10^{12}</td>
<td>10^9</td>
<td>3.16×10^7</td>
</tr>
</tbody>
</table>

- We’ve wrapped insertion sort in another loop and increased its efficiency! The key is in the larger jumps that Shell sort allows.

Sorting by Exchange I: Bubble Sort

- Perform a sequence of passes through the array.
- On each pass: proceed from left to right, swapping adjacent elements if they are out of order.
- Larger elements “bubble up” to the end of the array.
- At the end of the kth pass, the k rightmost elements are in their final positions, so we don’t need to consider them in subsequent passes.

- Example:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>28</td>
<td>24</td>
<td>27</td>
<td>18</td>
</tr>
</tbody>
</table>

 after the first pass: 24 27 18 28

 after the second: 24 18 27 28

 after the third: 18 24 27 28
Implementation of Bubble Sort

public class Sort {
 ...
 public static void bubbleSort(int[] arr) {
 for (int i = arr.length - 1; i > 0; i--) {
 for (int j = 0; j < i; j++) {
 if (arr[j] > arr[j+1])
 swap(arr, j, j+1);
 }
 }
 }
}

• One for-loop nested in another:
 • the inner loop performs a single pass
 • the outer loop governs the number of passes, and the ending point of each pass

Time Analysis of Bubble Sort

• **Comparisons**: the kth pass performs _____ comparisons, so we get \(C(n) = \)

• **Moves**: depends on the contents of the array
 • in the worst case:
 • in the best case:

• **Running time:**
Sorting by Exchange II: Quicksort

- Like bubble sort, quicksort uses an approach based on exchanging out-of-order elements, but it’s more efficient.
- A recursive, divide-and-conquer algorithm:
 - **divide**: rearrange the elements so that we end up with two subarrays that meet the following criterion:

 `each element in the left array <= each element in the right array`

 example:

12	8	14	4	6	13
6	8	4	14	12	13

 - **conquer**: apply quicksort recursively to the subarrays, stopping when a subarray has a single element
 - **combine**: nothing needs to be done, because of the criterion used in forming the subarrays

Partitioning an Array Using a Pivot

- The process that quicksort uses to rearrange the elements is known as **partitioning** the array.
- Partitioning is done using a value known as the **pivot**.
- We rearrange the elements to produce two subarrays:
 - left subarray: all values <= pivot
 - right subarray: all values >= pivot

 equivalent to the criterion on the previous page.

 example:

<table>
<thead>
<tr>
<th>7</th>
<th>15</th>
<th>4</th>
<th>9</th>
<th>6</th>
<th>18</th>
<th>9</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>9</td>
<td>4</td>
<td>6</td>
<td>9</td>
<td>18</td>
<td>15</td>
<td>12</td>
</tr>
</tbody>
</table>

 partition using a pivot of 9

<table>
<thead>
<tr>
<th>7</th>
<th>9</th>
<th>4</th>
<th>6</th>
<th>9</th>
<th>18</th>
<th>15</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>all values <= 9</td>
<td>all values >= 9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Our approach to partitioning is one of several variants.
- Partitioning is useful in its own right.

 ex: find all students with a GPA > 3.0.
Possible Pivot Values

- First element or last element
 - risky, can lead to terrible worst-case behavior
 - especially poor if the array is almost sorted

 |
 \[
 \begin{array}{cccccc}
 4 & 8 & 14 & 12 & 6 & 18 \\
 \end{array}
 \]

- Middle element (what we will use)
- Randomly chosen element
- Median of three elements
 - left, center, and right elements
 - three randomly selected elements
 - taking the median of three decreases the probability of getting a poor pivot

Partitioning an Array: An Example

- Maintain indices i and j, starting them “outside” the array:

 |
 \[
 \begin{array}{cccc}
 i = \text{first} - 1 & j = \text{last} + 1 \\
 \end{array}
 \]

- Find “out of place” elements:
 - increment i until arr[i] >= pivot
 - decrement j until arr[j] <= pivot

- Swap arr[i] and arr[j]:

Partitioning Example (cont.)

from prev. page:

- Find:

- Swap:

- Find:

and now the indices have crossed, so we return j.

- Subarrays: $left = arr[first:j]$, $right = arr[j+1:last]$

Partitioning Example 2

- Start (pivot = 13):

- Find:

- Swap:

- Find:

and now the indices are equal, so we return j.

- Subarrays:
Partitioning Example 3 (done together)

• Start (pivot = 5):

4 14 7 5 2 19 26 6

• Find:

4 14 7 5 2 19 26 6

partition() Helper Method

private static int partition(int[] arr, int first, int last) {
 int pivot = arr[(first + last)/2];
 int i = first - 1; // index going left to right
 int j = last + 1; // index going right to left
 while (true) {
 do {
 i++;
 } while (arr[i] < pivot);
 do {
 j--;
 } while (arr[j] > pivot);
 if (i < j)
 swap(arr, i, j);
 else
 return j; // arr[j] = end of left array
 }
}
Implementation of Quicksort

```java
public static void quickSort(int[] arr) {
    qSort(arr, 0, arr.length - 1);
}

private static void qSort(int[] arr, int first, int last) {
    int split = partition(arr, first, last);
    if (first < split)
        qSort(arr, first, split);      // left subarray
    if (last > split + 1)
        qSort(arr, split + 1, last);   // right subarray
}
```

Counting Students: Divide and Conquer

- Everyone stand up.

- You will each carry out the following algorithm:
 count = 1;
 while (you are not the only person standing) {
 find another person who is standing
 if (your first name < other person's first name)
 sit down (break ties using last names)
 else
 count = count + the other person's count
 }
 if (you are the last person standing)
 report your final count
Counting Students: Divide and Conquer (cont.)

• At each stage of the "joint algorithm", the problem size is divided in half.

• How many stages are there as a function of the number of students, n?

• This approach benefits from the fact that you perform the algorithm in parallel with each other.

A Quick Review of Logarithms

• $\log_b n = \text{the exponent to which } b \text{ must be raised to get } n$
 - $\log_b n = p \text{ if } b^p = n$
 - examples: $\log_2 8 = 3$ because $2^3 = 8$
 $\log_{10} 10000 = 4$ because $10^4 = 10000$

• Another way of looking at logs:
 - let's say that you repeatedly divide n by b (using integer division)
 - $\log_b n$ is an upper bound on the number of divisions needed to reach 1
 - example: $\log_2 18$ is approx. 4.17
 $18/2 = 9 \quad 9/2 = 4 \quad 4/2 = 2 \quad 2/2 = 1$
A Quick Review of Logs (cont.)

• If the number of operations performed by an algorithm is proportional to \(\log_b n \) for any base \(b \), we say it is a \(O(\log n) \) algorithm – dropping the base.

• \(\log_b n \) grows much more slowly than \(n \)

<table>
<thead>
<tr>
<th>(n)</th>
<th>(\log_2 n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>1024 (1K)</td>
<td>10</td>
</tr>
<tr>
<td>1024*1024 (1M)</td>
<td>20</td>
</tr>
</tbody>
</table>

• Thus, for large values of \(n \):
 • a \(O(\log n) \) algorithm is much faster than a \(O(n) \) algorithm
 • a \(O(n \log n) \) algorithm is much faster than a \(O(n^2) \) algorithm
 • We can also show that an \(O(n \log n) \) algorithm is faster than a \(O(n^{1.5}) \) algorithm like Shell sort.

Time Analysis of Quicksort

• Partitioning an array requires \(n \) comparisons, because each element is compared with the pivot.

• best case: partitioning always divides the array in half
 • repeated recursive calls give:

\[
\begin{align*}
&\text{comparisons} \\
&\text{n} \\
&2^{n/2} = n \\
&4^{n/4} = n
\end{align*}
\]

• at each "row" except the bottom, we perform \(n \) comparisons
• there are ________ rows that include comparisons
• \(C(n) = ? \)
• Similarly, \(M(n) \) and running time are both __________
Time Analysis of Quicksort (cont.)

- **worst case**: pivot is always the smallest or largest element
 - one subarray has 1 element, the other has \(n - 1 \)
 - repeated recursive calls give:

 \[
 \begin{array}{c}
 n \\
 1 \quad n-1 \\
 1 \quad n-2 \\
 1 \quad n-3 \\
 \vdots \\
 1 \quad 2 \\
 1 \quad 1 \\
 \end{array}
 \]

 \[
 C(n) = \sum_{i=2}^{n} i = O(n^2). \quad M(n) \text{ and run time are also } O(n^2).
 \]

- **average case** is harder to analyze
 - \(C(n) > n \log_2 n \), but it's still \(O(n \log n) \)

Mergesort

- All of the comparison-based sorting algorithms that we've seen thus far have sorted the array in place.
 - used only a small amount of additional memory

- Mergesort is a sorting algorithm that requires an additional temporary array of the same size as the original one.
 - it needs \(O(n) \) additional space, where \(n \) is the array size

- It is based on the process of *merging* two sorted arrays into a single sorted array.
 - example:
 - initial array: 2 8 14 24
 - merged array: 2 5 7 8 9 11 14 24
 - sorted array: 5 7 9 11
Merging Sorted Arrays

• To merge sorted arrays A and B into an array C, we maintain three indices, which start out on the first elements of the arrays:

\[
\begin{array}{cccc}
\text{A} & 2 & 8 & 14 & 24 \\
\text{B} & 5 & 7 & 9 & 11 \\
\end{array}
\]

• We repeatedly do the following:
 • compare \(A[i] \) and \(B[j] \)
 • copy the smaller of the two to \(C[k] \)
 • increment the index of the array whose element was copied
 • increment \(k \)

\[
\begin{array}{cccc}
\text{A} & 2 & 8 & 14 & 24 \\
\text{B} & 5 & 7 & 9 & 11 \\
\text{C} & & & & \\
\end{array}
\]

Merging Sorted Arrays (cont.)

• Starting point:

\[
\begin{array}{cccc}
\text{A} & 2 & 8 & 14 & 24 \\
\text{B} & 5 & 7 & 9 & 11 \\
\text{C} & & & & \\
\end{array}
\]

• After the first copy:

\[
\begin{array}{cccc}
\text{A} & 2 & 8 & 14 & 24 \\
\text{B} & 5 & 7 & 9 & 11 \\
\text{C} & 2 & & & \\
\end{array}
\]

• After the second copy:

\[
\begin{array}{cccc}
\text{A} & 2 & 8 & 14 & 24 \\
\text{B} & 5 & 7 & 9 & 11 \\
\text{C} & 2 & 5 & & \\
\end{array}
\]
Merging Sorted Arrays (cont.)

• After the third copy:

A

\[\begin{array}{cccc}
2 & 8 & 14 & 24 \\
\end{array} \]

B

\[\begin{array}{cccc}
5 & 7 & 9 & 11 \\
\end{array} \]

C

\[\begin{array}{cccc}
2 & 5 & 7 & \emptyset \\
\end{array} \]

• After the fourth copy:

A

\[\begin{array}{cccc}
2 & 8 & 14 & 24 \\
\end{array} \]

B

\[\begin{array}{cccc}
5 & 7 & 9 & 11 \\
\end{array} \]

C

\[\begin{array}{cccc}
2 & 5 & 7 & 8 \\
\end{array} \]

• After the fifth copy:

A

\[\begin{array}{cccc}
2 & 8 & 14 & 24 \\
\end{array} \]

B

\[\begin{array}{cccc}
5 & 7 & 9 & 11 \\
\end{array} \]

C

\[\begin{array}{cccc}
2 & 5 & 7 & 8 & 9 \\
\end{array} \]

• After the sixth copy:

A

\[\begin{array}{cccc}
2 & 8 & 14 & 24 \\
\end{array} \]

B

\[\begin{array}{cccc}
5 & 7 & 9 & 11 \\
\end{array} \]

C

\[\begin{array}{cccc}
2 & 5 & 7 & 8 & 9 & 11 \\
\end{array} \]

• There's nothing left in B, so we simply copy the remaining elements from A:

A

\[\begin{array}{cccc}
2 & 8 & 14 & 24 \\
\end{array} \]

B

\[\begin{array}{cccc}
5 & 7 & 9 & 11 \\
\end{array} \]

C

\[\begin{array}{cccc}
2 & 5 & 7 & 8 & 9 & 11 & 14 & 24 \\
\end{array} \]
Divide and Conquer

- Like quicksort, mergesort is a divide-and-conquer algorithm.
 - *divide*: split the array in half, forming two subarrays
 - *conquer*: apply mergesort recursively to the subarrays, stopping when a subarray has a single element
 - *combine*: merge the sorted subarrays

12 8 14 4 6 33 2 27

<table>
<thead>
<tr>
<th>Split</th>
<th>Split</th>
<th>Split</th>
<th>Merge</th>
<th>Merge</th>
<th>Merge</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 8 14 4</td>
<td>6 33 2 27</td>
<td>8 12 4 14</td>
<td>2 6 27 33</td>
<td>2 4 6 8 12 14 27 33</td>
<td></td>
</tr>
</tbody>
</table>

Tracing the Calls to Mergesort

The initial call is made to sort the entire array:

12 8 14 4 6 33 2 27

Split into two 4-element subarrays, and make a recursive call to sort the left subarray:

12 8 14 4 6 33 2 27

12 8 14 4

Split into two 2-element subarrays, and make a recursive call to sort the left subarray:

12 8 14 4 6 33 2 27

12 8 14 4

12 8
Tracing the Calls to Mergesort

split into two 1-element subarrays, and make a recursive call to sort the left subarray:

```
12  8  14  4  6  33  2  27
12  8  14  4
12  8
12
```

base case, so return to the call for the subarray \{12, 8\}:

```
12  8  14  4  6  33  2  27
12  8  14  4
12  8
```

Tracing the Calls to Mergesort

make a recursive call to sort its right subarray:

```
12  8  14  4  6  33  2  27
12  8  14  4
12  8
```

base case, so return to the call for the subarray \{12, 8\}:

```
12  8  14  4  6  33  2  27
12  8  14  4
12  8
```
Tracing the Calls to Mergesort

merge the sorted halves of \{12, 8\}:

\[
\begin{array}{cccccc}
12 & 8 & 14 & 4 & 6 & 33 & 2 & 27 \\
\end{array}
\]

\[
\begin{array}{cccc}
12 & 8 & 14 & 4 \\
\end{array}
\]

\[
\begin{array}{cc}
12 & 8 \\
\Rightarrow & 8 & 12 \\
\end{array}
\]

end of the method, so return to the call for the 4-element subarray, which now has a sorted left subarray:

\[
\begin{array}{cccccc}
12 & 8 & 14 & 4 & 6 & 33 & 2 & 27 \\
\end{array}
\]

\[
\begin{array}{cccc}
8 & 12 & 14 & 4 \\
\end{array}
\]

Tracing the Calls to Mergesort

make a recursive call to sort the right subarray of the 4-element subarray

\[
\begin{array}{cccccc}
12 & 8 & 14 & 4 & 6 & 33 & 2 & 27 \\
\end{array}
\]

\[
\begin{array}{cccc}
8 & 12 & 14 & 4 \\
\end{array}
\]

\[
\begin{array}{cc}
14 & 4 \\
\end{array}
\]

split it into two 1-element subarrays, and make a recursive call to sort the left subarray:

\[
\begin{array}{cccccc}
12 & 8 & 14 & 4 & 6 & 33 & 2 & 27 \\
\end{array}
\]

\[
\begin{array}{cccc}
8 & 12 & 14 & 4 \\
\end{array}
\]

\[
\begin{array}{cc}
14 & 4 \\
\end{array}
\]

\[
\begin{array}{c}
14 \\
\end{array}
\]

base case…
Tracing the Calls to Mergesort

return to the call for the subarray \(\{14, 4\}\):

\[
\begin{array}{cccccccc}
12 & 8 & 14 & 4 & 6 & 33 & 2 & 27 \\
\hline
8 & 12 & 14 & 4 \\
14 & 4 \\
\end{array}
\]

make a recursive call to sort its right subarray:

\[
\begin{array}{cccccccc}
12 & 8 & 14 & 4 & 6 & 33 & 2 & 27 \\
\hline
8 & 12 & 14 & 4 \\
14 & 4 \\
\end{array}
\]

merge the sorted halves of \(\{14, 4\}\):

\[
\begin{array}{cccccccc}
12 & 8 & 14 & 4 & 6 & 33 & 2 & 27 \\
\hline
8 & 12 & 14 & 4 \\
14 & 4 \\
\text{base case...} \\
\end{array}
\]
Tracing the Calls to Mergesort

end of the method, so return to the call for the 4-element subarray, which now has two sorted 2-element subarrays:

\[\begin{array}{cccccccc}
12 & 8 & 14 & 4 & 6 & 33 & 2 & 27 \\
8 & 12 & 4 & 14 \\
\end{array}\]

merge the 2-element subarrays:

\[\begin{array}{cccccccc}
12 & 8 & 14 & 4 & 6 & 33 & 2 & 27 \\
8 & 12 & 4 & 14 \rightarrow 4 & 8 & 12 & 14 \\
\end{array}\]

end of the method, so return to the call for the original array, which now has a sorted left subarray:

\[\begin{array}{cccccccc}
4 & 8 & 12 & 14 & 6 & 33 & 2 & 27 \\
\end{array}\]

perform a similar set of recursive calls to sort the right subarray. here's the result:

\[\begin{array}{cccccccc}
4 & 8 & 12 & 14 & 2 & 6 & 27 & 33 \\
\end{array}\]

finally, merge the sorted 4-element subarrays to get a fully sorted 8-element array:

\[\begin{array}{cccccccc}
4 & 8 & 12 & 14 & 2 & 6 & 27 & 33 \\
2 & 4 & 6 & 8 & 12 & 14 & 27 & 33 \\
\end{array}\]
Implementing Mergesort

- One approach is to create new arrays for each new set of subarrays, and to merge them back into the array that was split.

- Instead, we'll create a temp. array of the same size as the original.
 - pass it to each call of the recursive mergesort method
 - use it when merging subarrays of the original array:

```
8 12 4 14 6 33 2 27
```

```
4 8 12 14
```

- after each merge, copy the result back into the original array:

```
4 8 12 14 6 33 2 27
```

```
4 8 12 14
```

A Method for Merging Subarrays

```java
public static void merge(int[] arr, int[] temp,
  int leftStart, int leftEnd, int rightStart, int rightEnd) {
  int i = leftStart;    // index into left subarray
  int j = rightStart;   // index into right subarray
  int k = leftStart;    // index into temp
  while (i <= leftEnd && j <= rightEnd) {
    if (arr[i] < arr[j])
      temp[k++] = arr[i++];
    else
      temp[k++] = arr[j++];
  }
  while (i <= leftEnd)
    temp[k++] = arr[i++];
  while (j <= rightEnd)
    temp[k++] = arr[j++];
  for (i = leftStart; i <= rightEnd; i++)
    arr[i] = temp[i];
}
```
Methods for Mergesort

- We use a wrapper method to create the temp. array, and to make the initial call to a separate recursive method:

```java
public static void mergeSort(int[] arr) {
    int[] temp = new int[arr.length];
    mSort(arr, temp, 0, arr.length - 1);
}
```

- Let's implement the recursive method together:

```java
public static void mSort(int[] arr, int[] temp, int start, int end) {
    if (start >= end)   // base case
        return;
    int middle = (start + end)/2;
    mergeSort(arr, tmp, start, middle);
    mergeSort(arr, tmp, middle + 1, end);
    merge(arr, tmp, start, middle, middle + 1, end);
}
```

Time Analysis of Mergesort

- Merging two halves of an array of size n requires 2n moves. Why?

- Mergesort repeatedly divides the array in half, so we have the following call tree (showing the sizes of the arrays):

```
2n
\[
\begin{array}{cccc}
  n/2 & n/2 \\
  n/4 & n/4 & n/4 & n/4 \\
  \ldots & \ldots & \ldots & \ldots \\
  1 & 1 & 1 & 1 & 1 & 1 & \ldots & 1 & 1 & 1 & 1 \\
\end{array}
\]
```

- at all but the last level of the call tree, there are 2n moves
- how many levels are there?
- \(M(n) = ? \)
- \(C(n) = ? \)
Summary: Comparison-Based Sorting Algorithms

<table>
<thead>
<tr>
<th>algorithm</th>
<th>best case</th>
<th>avg case</th>
<th>worst case</th>
<th>extra memory</th>
</tr>
</thead>
<tbody>
<tr>
<td>selection sort</td>
<td>O(n^2)</td>
<td>O(n^2)</td>
<td>O(n^2)</td>
<td>O(1)</td>
</tr>
<tr>
<td>insertion sort</td>
<td>O(n)</td>
<td>O(n^2)</td>
<td>O(n^2)</td>
<td>O(1)</td>
</tr>
<tr>
<td>Shell sort</td>
<td>O(n log n)</td>
<td>O(n^{1.5})</td>
<td>O(n^{1.5})</td>
<td>O(1)</td>
</tr>
<tr>
<td>bubble sort</td>
<td>O(n^2)</td>
<td>O(n^2)</td>
<td>O(n^2)</td>
<td>O(1)</td>
</tr>
<tr>
<td>quicksort</td>
<td>O(n log n)</td>
<td>O(n log n)</td>
<td>O(n^2)</td>
<td>O(1)</td>
</tr>
<tr>
<td>mergesort</td>
<td>O(n log n)</td>
<td>O(n log n)</td>
<td>O(n log n)</td>
<td>O(n)</td>
</tr>
</tbody>
</table>

- Insertion sort is best for nearly sorted arrays.
- Mergesort has the best worst-case complexity, but requires extra memory – and moves to and from the temp array.
- Quicksort is comparable to mergesort in the average case. With a reasonable pivot choice, its worst case is seldom seen.
- Use ~cscie119/examples/sorting/SortCount.java to experiment.

Comparison-Based vs. Distributive Sorting

- Until now, all of the sorting algorithms we have considered have been comparison-based:
 - treat the keys as wholes (comparing them)
 - don’t “take them apart” in any way
 - all that matters is the relative order of the keys, not their actual values.
- No comparison-based sorting algorithm can do better than \(O(n \log_2 n) \) on an array of length \(n \).
 - \(O(n \log_2 n) \) is a lower bound for such algorithms.
- Distributive sorting algorithms do more than compare keys; they perform calculations on the actual values of individual keys.
- Moving beyond comparisons allows us to overcome the lower bound.
 - tradeoff: use more memory.
Distributive Sorting Example: Radix Sort

• Relies on the representation of the data as a sequence of \(m \) quantities with \(k \) possible values.

• Examples:
 - integer in range 0 ... 999 \(m = 3 \), \(k = 10 \)
 - string of 15 upper-case letters \(m = 15 \), \(k = 26 \)
 - 32-bit integer \(m = 32 \), \(k = 2 \) (in binary)
 - 4 bytes \(m = 4 \), \(k = 256 \) (as bytes)

• Strategy: Distribute according to the last element in the sequence, then concatenate the results:

\[
\begin{align*}
33 & \quad 41 & \quad 12 & \quad 24 & \quad 31 & \quad 14 & \quad 13 & \quad 42 & \quad 34 \\
\text{get:} & \quad 41 & \quad 31 & \quad 12 & \quad 42 & \quad 33 & \quad 13 & \quad 24 & \quad 14 & \quad 34
\end{align*}
\]

• Repeat, moving back one digit each time:

\[
\begin{align*}
\text{get:} & \quad | & \quad | & \quad |
\end{align*}
\]

Analysis of Radix Sort

• Recall that we treat the values as a sequence of \(m \) quantities with \(k \) possible values.

• Number of operations is \(O(n^m) \) for an array with \(n \) elements
 - better than \(O(n \log n) \) when \(m < \log n \)

• Memory usage increases as \(k \) increases.
 - \(k \) tends to increase as \(m \) decreases
 - tradeoff: increased speed requires increased memory usage
Big-O Notation Revisited

- We’ve seen that we can group functions into classes by focusing on the fastest-growing term in the expression for the number of operations that they perform.
 - e.g., an algorithm that performs \(\frac{n^2}{2} - \frac{n}{2} \) operations is a \(O(n^2) \)-time or quadratic-time algorithm

- Common classes of algorithms:

<table>
<thead>
<tr>
<th>name</th>
<th>example expressions</th>
<th>big-O notation</th>
</tr>
</thead>
<tbody>
<tr>
<td>constant time</td>
<td>1, 7, 10</td>
<td>(O(1))</td>
</tr>
<tr>
<td>logarithmic</td>
<td>(3\log_{10}n, \log_2n + 5)</td>
<td>(O(\log n))</td>
</tr>
<tr>
<td>linear time</td>
<td>(5n, 10n - 2\log_2n)</td>
<td>(O(n))</td>
</tr>
<tr>
<td>nlogn time</td>
<td>(4n\log_2n, n\log_2n + n)</td>
<td>(O(n\log n))</td>
</tr>
<tr>
<td>quadratic time</td>
<td>(2n^2 + 3n, n^2 - 1)</td>
<td>(O(n^2))</td>
</tr>
<tr>
<td>cubic time</td>
<td>(n^2 + 3n^3, 5n^3 - 5)</td>
<td>(O(n^3))</td>
</tr>
<tr>
<td>exponential</td>
<td>(2^n, 5e^n + 2n^2)</td>
<td>(O(c^n))</td>
</tr>
<tr>
<td>factorial time</td>
<td>(3n!, 5n + n!)</td>
<td>(O(n!))</td>
</tr>
</tbody>
</table>

How Does the Number of Operations Scale?

- Let's say that we have a problem size of 1000, and we measure the number of operations performed by a given algorithm.

- If we double the problem size to 2000, how would the number of operations performed by an algorithm increase if it is:
 - \(O(n) \)-time
 - \(O(n^2) \)-time
 - \(O(n^3) \)-time
 - \(O(\log_2n) \)-time
 - \(O(2^n) \)-time
How Does the Actual Running Time Scale?

- How much time is required to solve a problem of size \(n \)?
- Assume that each operation requires 1 \(\mu \text{sec} \) (1 x 10\(^{-6}\) sec)

<table>
<thead>
<tr>
<th>time function</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n)</td>
<td>.00001 s</td>
<td>.00002 s</td>
<td>.00003 s</td>
<td>.00004 s</td>
<td>.00005 s</td>
<td>.00006 s</td>
</tr>
<tr>
<td>(n^2)</td>
<td>.0001 s</td>
<td>.0004 s</td>
<td>.0009 s</td>
<td>.0016 s</td>
<td>.0025 s</td>
<td>.0036 s</td>
</tr>
<tr>
<td>(n^5)</td>
<td>.1 s</td>
<td>3.2 s</td>
<td>24.3 s</td>
<td>1.7 min</td>
<td>5.2 min</td>
<td>13.0 min</td>
</tr>
<tr>
<td>(2^n)</td>
<td>.001 s</td>
<td>1.0 s</td>
<td>17.9 min</td>
<td>12.7 days</td>
<td>35.7 yrs</td>
<td>36,600 yrs</td>
</tr>
</tbody>
</table>

- Sample computations:
 - When \(n = 10 \), an \(n^2 \) algorithm performs \(10^2 \) operations.
 \[10^2 \times (1 \times 10^{-6} \text{ sec}) = .0001 \text{ sec} \]
 - When \(n = 30 \), a \(2^n \) algorithm performs \(2^{30} \) operations.
 \[2^{30} \times (1 \times 10^{-6} \text{ sec}) = 1073 \text{ sec} = 17.9 \text{ min} \]

What's the Largest Problem That Can Be Solved?

- What's the largest problem size \(n \) that can be solved in a given time \(T \)? (again assume 1 \(\mu \text{sec} \) per operation)

<table>
<thead>
<tr>
<th>time function</th>
<th>1 min</th>
<th>1 hour</th>
<th>1 week</th>
<th>1 year</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n)</td>
<td>60,000,000</td>
<td>3.6 x 10^9</td>
<td>6.0 x 10^{11}</td>
<td>3.1 x 10^{13}</td>
</tr>
<tr>
<td>(n^2)</td>
<td>7745</td>
<td>60,000</td>
<td>777,688</td>
<td>5,615,692</td>
</tr>
<tr>
<td>(n^5)</td>
<td>35</td>
<td>81</td>
<td>227</td>
<td>500</td>
</tr>
<tr>
<td>(2^n)</td>
<td>25</td>
<td>31</td>
<td>39</td>
<td>44</td>
</tr>
</tbody>
</table>

- Sample computations:
 - 1 hour = 3600 sec
 - That's enough time for \(3600/(1 \times 10^{-6}) = 3.6 \times 10^6 \) operations
 - \(n^2 \) algorithm:
 \[n^2 = 3.6 \times 10^9 \Rightarrow n = (3.6 \times 10^9)^{1/2} = 60,000 \]
 - \(2^n \) algorithm:
 \[2^n = 3.6 \times 10^9 \Rightarrow n = \log_2(3.6 \times 10^9) \approx 31 \]