Hash Tables

Data Dictionary Revisited

• We’ve considered several data structures that allow us to store and search for data items using their keys fields:

<table>
<thead>
<tr>
<th>data structure</th>
<th>searching for an item</th>
<th>inserting an item</th>
</tr>
</thead>
<tbody>
<tr>
<td>a list implemented using an array</td>
<td>O(log n) using binary search</td>
<td>O(n)</td>
</tr>
<tr>
<td>a list implemented using a linked list</td>
<td></td>
<td></td>
</tr>
<tr>
<td>binary search tree</td>
<td></td>
<td></td>
</tr>
<tr>
<td>balanced search trees (2-3 tree, B-tree, others)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

• Today, we’ll look at hash tables, which allow us to do better than $O(\log n)$. 
Ideal Case: Searching = Indexing

• The optimal search and insertion performance is achieved when we can treat the key as an index into an array.
• Example: storing data about members of a sports team
  • key = jersey number (some value from 0-99).
  • class for an individual player’s record:
    ```java
    public class Player {
        private int jerseyNum;
        private String firstName;
    }
    ```
  • store the player records in an array:
    ```java
    Player[] teamRecords = new Player[100];
    ```
  • In such cases, we can perform both search and insertion in \( O(1) \) time. For example:
    ```java
    public Player search(int jerseyNum) {
        return teamRecords[jerseyNum];
    }
    ```

Hashing: Turning Keys into Array Indices

• In most real-world problems, indexing is not as simple as it is in the sports-team example. Why?
  •
  •
  •

• To handle these problems, we perform hashing:
  • use a hash function to convert the keys into array indices
  • make the range of possible hash values the same as the size of the array
  • use techniques to handle cases in which multiple items are assigned the same hash value

• The resulting data structure is known as a hash table.
Hash Functions

• For a hash table of size n, we use a hash function that defines a mapping from the set of possible key values to the set of integers from 0 to n – 1.

\[
\text{key value} \rightarrow \text{hash function} \rightarrow \text{integer in } [0, n - 1]
\]

• Example of a simple hash function:
  • keys = character strings composed of lower-case letters
  • hash function:
    \[
    h(\text{key}) = \text{Unicode value of first char} - \text{Unicode value of ‘a’}
    \]
  • examples:
    \[
    h(\text{“ant”}) = \text{Unicode for ‘a’} - \text{Unicode for ‘a’} = 0
    h(\text{“cat”}) = \text{Unicode for ‘c’} - \text{Unicode for ‘a’} = 2
    \]
  • A collision occurs when items with different key values are assigned the same hash code.

Dealing with Collisions I: Separate Chaining

• If multiple items are assigned the same hash code, we “chain” them together.

• Each position in the hash table serves as a bucket that is able to store multiple data items.

• Two implementations:
  1. each bucket is itself an array
     • disadvantages:
       • large buckets can waste memory
       • a bucket may become full; overflow occurs when we try to add an item to a full bucket
  2. each bucket is a linked list
     • disadvantage:
       • the references in the nodes use additional memory
Dealing with Collisions II: Open Addressing

• When the position assigned by the hash function is occupied, find another open position.

• Example: “wasp” has a hash code of 22, but it ends up in position 23, because position 22 is occupied.

• We will consider three ways of finding an open position – a process known as probing.

• The hash table also performs probing to search for an item.
  • example: when searching for “wasp”, we look in position 22 and then look in position 23
  • we can only stop a search when we reach an empty position

Linear Probing

• Probe sequence: \( h(key), h(key) + 1, h(key) + 2, \ldots \), wrapping around as necessary.

• Examples:
  • “ape” (\( h = 0 \)) would be placed in position 1, because position 0 is already full.
  • “bear” (\( h = 1 \)): try 1, 1 + 1, 1 + 2 – open!
  • where would “zebu” end up?

• Advantage: if there is an open position, linear probing will eventually find it.

• Disadvantage: “clusters” of occupied positions develop, which tends to increase the lengths of subsequent probes.
  • probe length = the number of positions considered during a probe
Quadratic Probing

- Probe sequence: \( h(key), h(key) + 1, h(key) + 4, h(key) + 9, \ldots \)
  - wrapping around as necessary.
- the offsets are perfect squares: \( h + 1^2, h + 2^2, h + 3^2, \ldots \)
- Examples:
  - “ape” (\( h = 0 \)): try 0, 0 + 1 – open!
  - “bear” (\( h = 1 \)): try 1, 1 + 1, 1 + 4 – open!
  - “zebu”?
- Advantage: reduces clustering
- Disadvantage: it may fail to find an existing open position. For example:

<table>
<thead>
<tr>
<th>Table Size = 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>x = occupied</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
</tbody>
</table>

Double Hashing

- Use two hash functions:
  - \( h1 \) computes the hash code
  - \( h2 \) computes the increment for probing
  - probe sequence: \( h1, h1 + h2, h1 + 2h2, \ldots \)
- Examples:
  - \( h1 = \) our previous \( h \)
  - \( h2 = \) number of characters in the string
  - “ape” (\( h1 = 0, h2 = 3 \)): try 0, 0 + 3 – open!
  - “bear” (\( h1 = 1, h2 = 4 \)): try 1 – open!
  - “zebu”?
- Combines the good features of linear and quadratic probing:
  - reduces clustering
  - will find an open position if there is one, provided the table size is a prime number

<table>
<thead>
<tr>
<th>Table Size = 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>x = occupied</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>22</td>
</tr>
<tr>
<td>23</td>
</tr>
<tr>
<td>24</td>
</tr>
<tr>
<td>25</td>
</tr>
</tbody>
</table>
Removing Items Under Open Addressing

• Consider the following scenario:
  • using linear probing
  • insert “ape” (h = 0): try 0, 0 + 1 – open!
  • insert “bear” (h = 1): try 1, 1 + 1, 1 + 2 – open!
  • remove “ape”
  • search for “ape”: try 0, 0 + 1 – no item
  • search for “bear”: try 1 – no item, but “bear” is further down in the table
  • When we remove an item from a position, we need to leave a special value in that position to indicate that an item was removed.

• Three types of positions: occupied, empty, “removed”.
• We stop probing when we encounter an empty position, but not when we encounter a removed position.
• We can insert items in either empty or removed positions.

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 |
| \texttt{“ant”} | \texttt{“cat”} | \texttt{“bear”} | \texttt{“emu”} | \texttt{null} |

Implementation (~cscie119/examples/hash/HashTable.java)

```java
public class HashTable {
    private class Entry {
        private Object key;
        private LLList valueList;
        private boolean hasBeenRemoved;
    }
    private Entry[] table;
    private int probeType;
}
```

• We use a private inner class for the entries in the hash table.
• To handle duplicates, we maintain a list of values for each key.
• When we remove a key and its values, we set the Entry’s hasBeenRemoved field to true; this indicates that the position is a removed position.
Probing Using Double Hashing

```java
private int probe(String key) {
    int i = h1(key);    // first hash function
    int h2 = h2(key);   // second hash function

    // keep probing until we get an empty position or match
    // (write this together)

    while (table[i] != null && !key.equals(table[i].key)) {
        i = (i + h2) % table.length;
    }

    return i;
}
```

- We'll assume that removed positions have a key of null.
  - thus, for non-empty positions, it's always okay to compare the probe key with the key in the Entry

Avoiding an Infinite Loop

- The while loop in our probe method could lead to an infinite loop.
  ```java
  while (table[i] != null && !key.equals(table[i].key)) {
      i = (i + h2) % table.length;
  }
  ```
- We can stop probing after checking \( n \) positions (\( n = \) table size), because the probe sequence will just repeat after that point.
  - for quadratic probing:
    \[
    (h1 + n^2) \mod n = h1 \mod n \\
    (h1 + (n+1)^2) \mod n = (h1 + n^2 + 2n + 1) \mod n = (h1 + 1) \mod n
    \]
  - for double hashing:
    \[
    (h1 + n*h2) \mod n = h1 \mod n \\
    (h1 + (n+1)*h2) \mod n = (h1 + n*h2 + h2) \mod n = (h1 + h2) \mod n
    \]
private int probe(String key) {
    int i = h1(key);    // first hash function
    int h2 = h2(key);   // second hash function
    int positionsChecked = 1;

    // keep probing until we get an
    // empty position or a match
    while (table[i] != null && !key.equals(table[i].key)) {
        if (positionsChecked == table.length)
            return -1;
        i = (i + h2) % table.length;
        positionsChecked++;
    }

    return i;
}

private int probe(String key) {
    int i = h1(key);    // first hash function
    int h2 = h2(key);   // second hash function
    int positionsChecked = 1;

    // keep probing until we get an
    // empty position or a match
    while (table[i] != null && !key.equals(table[i].key)) {
        if (positionsChecked == table.length)
            return -1;
        i = (i + probeIncrement(positionsChecked, h2)) % table.length;
        positionsChecked++;
    }

    return i;
}
Handling the Other Types of Probing (cont.)

• The `probeIncrement()` method bases the increment on the type of probing:

```java
private int probeIncrement(int n, int h2) {
    if (n <= 0)
        return 0;
    switch (probeType) {
        case LINEAR:
            return 1;
        case QUADRATIC:
            return (2*n - 1);
        case DOUBLE HASHING:
            return h2;
    }
}
```

Handling the Other Types of Probing (cont.)

• For quadratic probing, `probeIncrement(n, h2)` returns

\[ 2^n - 1 \]

Why does this work?

• Recall that for quadratic probing:
  • probe sequence = h1, h1 + 1^2, h1 + 2^2, ...
  • nth index in the sequence = h1 + n^2

• The increment used to compute the nth index

\[
\text{nth index} - (n-1)\text{st index}
= (h1 + n^2) - (h1 + (n-1)^2)
= n^2 - (n-1)^2
= n^2 - (n^2 - 2n + 1)
= 2n - 1
\]
Search and Removal

- Both of these methods begin by probing for the key.

```java
public LLList search(String key) {
    int i = probe(key);
    if (i == -1 || table[i] == null)
        return null;
    else
        return table[i].valueList;
}
```

```java
public void remove(String key) {
    int i = probe(key);
    if (i == -1 || table[i] == null)
        return;
    table[i].key = null;
    table[i].valueList = null;
    table[i].hasBeenRemoved = true;
}
```

Insertion

- We begin by probing for the key.
- Several cases:
  1. the key is already in the table (we're inserting a duplicate)
     → add the value to the valueList in the key's Entry
  2. the key is not in the table: three subcases:
     a. encountered 1 or more removed positions while probing
        → put the (key, value) pair in the first removed position
        that we encountered while searching for the key.
        why does this make sense?
     b. no removed position; reached an empty position
        → put the (key, value) pair in the empty position
     c. no removed position or empty position encountered
        → overflow; throw an exception
Insertion (cont.)

- To handle the special cases, we give this method its own implementation of probing:

```java
void insert(String key, int value) {
    int i = h1(key);
    int h2 = h2(key);
    int positionsChecked = 1;
    int firstRemoved = -1;
    while (table[i] != null && !key.equals(table[i].key)) {
        if (table[i].hasBeenRemoved && firstRemoved == -1)
            firstRemoved = i;
        if (positionsChecked == table.length)
            break;
        i = (i + probeIncrement(positionsChecked, h2)) % table.length;
        positionsChecked++;
    }
    // deal with the different cases (see next slide)
}
```

- firstRemoved remembers the first removed position encountered

Insertion (cont.)

```java
void insert(String key, int value) {
    int firstRemoved = -1;
    while (table[i] != null && !key.equals(table[i].key)) {
        if (table[i].hasBeenRemoved && firstRemoved == -1)
            firstRemoved = i;
        if (++positionsChecked == table.length)
            break;
        i = (i + h2) % table.length;
    }
    // deal with the different cases
}
```
Tracing Through Some Examples

- Start with the hashtable at right with:
  - double hashing
  - our earlier hash functions h1 and h2
- Perform the following operations:
  - insert "bear"
  - insert "bison"
  - insert "cow"
  - delete "emu"
  - search "eel"
  - insert "bee"

Dealing with Overflow

- Overflow = can't find a position for an item
- When does it occur?
  - linear probing:
  - quadratic probing:
  - double hashing:
    - if the table size is a prime number: same as linear
    - if the table size is not a prime number: same as quadratic
- To avoid overflow (and reduce search times), grow the hash table when the percentage of occupied positions gets too big.
  - problem: if we're not careful, we can end up needing to rehash all of the existing items
  - approaches exist that limit the number of rehashed items
Implementing the Hash Function

- Characteristics of a good hash function:
  1) efficient to compute
  2) uses the entire key
     - changing any char/digit/etc. should change the hash code
  3) distributes the keys more or less uniformly across the table
  4) must be a function!
     - a key must always get the same hash code

- Use the modulus operator (%) to get a valid array index:
  index = h(k) % table_size

- In Java, every object has a `hashCode()` method.
  - the version inherited from `Object` returns a value based on an object's memory location
  - classes can override this version with their own

Hash Functions for Strings: version 1

- \( h_a = \) the sum of the characters' Unicode values

- Example: \( h_a("eat") = 101 + 97 + 116 = 314 \)

- All permutations of a given set of characters get the same code.
  - example: \( h_a("tea") = h_a("eat") \)
  - could be useful in a Scrabble game
    - allow you to look up all words that can be formed from a given set of characters

- The range of possible hash codes is very limited.
  - example: hashing keys composed of 1-5 lower-case char’s (padded with spaces)
    - \( 26*27*27*27*27 = \) over 13 million possible keys
    - smallest code = \( h_a("a   ") = 97 + 4*32 = 225 \)
    - largest code = \( h_a("zzzzz") = 5*122 = 610 \)
    - \( 610 - 225 = 385 \) codes
Hash Functions for Strings: version 2

• Compute a weighted sum of the Unicode values:
  \[ h_b = a_0 b^{n-1} + a_1 b^{n-2} + \ldots + a_{n-2} b + a_{n-1} \]
  where \( a_i \) = Unicode value of the \( i \)th character
  \( b \) = a constant
  \( n \) = the number of characters

• Multiplying by powers of \( b \) allows the positions of the characters
to affect the hash code.
  • different permutations get different codes

• We may get arithmetic overflow, and thus the code
  may be negative. We adjust it when this happens.

• Java uses this hash function with \( b = 31 \) in the \texttt{hashCode}()
  method of the \texttt{String} class.

Hash Table Efficiency

• In the best case, search and insertion are \( O(1) \).

• In the worst case, search and insertion are linear.
  • open addressing: \( O(m) \), where \( m \) = the size of the hash table
  • separate chaining: \( O(n) \), where \( n \) = the number of keys

• With good choices of hash function and table size,
  complexity is generally better than \( O(\log n) \) and approaches \( O(1) \).

• load factor = \# keys in table / size of the table.
  To prevent performance degradation:
  • open addressing: try to keep the load factor < 1/2
  • separate chaining: try to keep the load factor < 1

• Time-space tradeoff: bigger tables have better performance,
  but they use up more memory.
Hash Table Limitations

- It can be hard to come up with a good hash function for a particular data set.

- The items are not ordered by key. As a result, we can’t easily:
  - print the contents in sorted order
  - perform a range search
  - perform a rank search – get the kth largest item

We can do all of these things with a search tree.

- For on-disk data, a B-tree is typically better.
  - # of disk accesses for a single item is comparable
    - internal nodes typically fit in memory, only go to disk for the leaves
  - takes advantage of locality in a sequence of accessed items
    – the degree to which the items are on the same page
  - use a hash table if the access pattern is completely random

Application of Hashing: Indexing a Document

- Read a text document from a file and create an index of the line numbers on which each word appears.

- Use a hash table to store the index:
  - key = word
  - values = line numbers in which the word appears

- `~cscie119/examples/hash/WordIndex.java`