David E. Golan

Department of Biological Chemistry & Molecular Pharmacology/
Physician, Brigham and Women's Hospital and Dana-Farber Cancer Institute
Harvard Medical School
Seeley G.Mudd Building, Room 304C
250 Longwood Avenue, Boston, MA 02115

tel: (617) 432-2256; fax: (617) 432-3833
email: david_golan@hms.harvard.edu

Research Interests:

Our goals are to understand the molecular interactions controlling protein and lipid mobility and distribution in cell membranes, the roles these mechanisms play in interactions between cells, and the relationships between derangements in these mechanisms and the pathophysiology of disease. We have designed and constructed several time-resolved scanning laser microscopes for interactive monitoring, tracking, and manipulating of biological samples at the single-cell and single-molecule levels on the µs-ms time scale and nm distance scale. Using these instruments, we are investigating: 1) Molecular interactions in erythroid cell membranes. We aim to define the modes of motion and strengths of interactions involving individual molecules in the mature red cell membrane, and to investigate the development of a functional membrane skeleton during erythroid cell differentiation. 2) Lymphocyte-erythrocyte adhesion in sickle cell disease. We aim to define the molecular mechanisms mediating adhesion of sickle red cells to activated T lymphocytes, and to investigate correlations between the level of adhesion and the pathophysiology of painful crisis episodes in patients with sickle cell disease. 3) Molecular interactions in T-cell adhesion. We aim to define the modes of motion, cell surface distribution, and two-dimensional binding interactions of T-cell adhesion molecules in natural and artificial membrane systems. 4) Quantitative analysis of the interaction between lipopolysaccharide (LPS) from Pseudomonas aeruginosa and the cystic fibrosis transmembrane conductance regulator (CFTR) protein. We aim to quantify the physical properties of LPS and CFTR at sites of contact between P. aeruginosa and pulmonary epithelial cells, and to characterize the molecular mechanisms mediating uptake of LPS and bacteria by such cells. 5) Cellular imaging of protein-protein interactions: visualizing the dynamic regulation of endothelial nitric oxide synthase (eNOS) and caveolin in calcium-dependent signal transduction. We aim to visualize the dynamic regulation of eNOS, caveolin, and related signaling molecules in vascular cells in culture and in the intact vasculature. Graduate student rotation projects are available in each of these areas.

Selected Publications:

Cho MR, Knowles DW, Smith BL, Moulds JJ, Agre P, Mohandas N, Golan DE. (1999). Membrane dynamics of the water transport protein aquaporin-1 in intact human red cells. Biophysical Journal 76:1136-1144.

Liu SJ, Golan DE. (1999). T cell stimulation through the T cell receptor/CD3 complex regulates CD2 lateral mobility by a calcium/calmodulin dependent mechanism. Biophysical Journal 76:1679-1692.

Mirchev R, Golan DE. (2001). Single particle tracking and laser optical tweezers studies of the dynamics of individual protein molecules in membranes of intact human and mouse red cells. Blood Cells Molecules Diseases. 27:143-147.

Schroeder TH, Lee MM, Yacono PW, Cannon CL, Gerceker AA, Golan DE, Pier GB. (2002). CFTR is a pattern recognition molecule that extracts Pseudomonas aeruginosa LPS from the outer membrane into epithelial cells and activates NF-kB translocation. Proceedings of the National Academy of Sciences USA. 99:6907-6912.

Jobin CM, Chen H, Yacono PW, Lin AJ, Igarashi J, Michel T, Golan DE. (2003). Receptor-regulated dynamic interaction between endothelial nitric oxide synthase and calmodulin revealed by fluorescence resonance energy transfer in living cells. Biochemistry. 42:11716-11725 .

Gonzalez E, Nagiel A, Lin AJ, Golan DE, Michel T. (2004). siRNA-mediated down-regulation of caveolin-1 differentially modulates signaling pathways in endothelial cells. J. Biol. Chem. In Press.

Page created and maintained by Xaq Pitkow